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The posthumous publication, in 1763, of Thomas Bayes’ “Essay Towards
Solving a Problem in the Doctrine of Chances” inaugurated a revolution in
the understanding of the confirmation of scientific hypotheses—two hun-
dred years later. Such a long period of neglect, followed by such a sweeping
revival, ensured that it was the inhabitants of the latter half of the twentieth
century above all who determined what it was to take a “Bayesian approach”
to scientific reasoning.

Like most confirmation theorists, Bayesians alternate between a descrip-
tive and a prescriptive tone in their teachings: they aim both to describe how
scientific evidence is assessed, and to prescribe how it ought to be assessed.
This double message will be made explicit at some points, but passed over
quietly elsewhere.

Subjective Probability

The first of the three fundamental tenets of Bayesianism is that the scientist’s
epistemic attitude to any scientifically significant proposition is, or ought to
be, exhausted by the subjective probability the scientist assigns to the propo-
sition. A subjective probability is a number between zero and one that re-
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flects in some sense the scientist’s confidence that the proposition is true.
(Subjective probabilities are sometimes called degrees of belief or credences.)

A scientist’s subjective probability for a proposition is, then, more a psy-
chological fact about the scientist than an observer-independent fact about
the proposition. Very roughly, it is not a matter of how likely the truth of
the proposition actually is, but about how likely the scientist thinks it to
be. Thus subjective—though with hindsight, psychological might have been
a better term.

Unlike every other approach to confirmation theory, Bayesianism has
no use for the notion of theory acceptance: there is no amount of evidence
sufficient to induce a qualitative shift in a Bayesian’s epistemic attitude from
not accepting to accepting a theory. Learning from the evidence is always a
matter of a quantitative adjustment, of changing your subjective probability
for a hypothesis to reflect the latest evidence. At any time, the most favored
theories are simply those with the highest subjective probabilities.

To found its first tenet, Bayesianism must establish that it is plausible
to suppose, or reasonable to require, that scientists have a subjective prob-
ability for every proposition that figures in their inquiry. Ramsey (1931)
proposed that to have a subjective probability for a proposition is to have
a certain complex disposition to act, a disposition that can be measured at
least tolerably well in many cases by assessing betting behavior, as follows.
The higher your subjective probability for a proposition, the lower the odds,
all other things being equal, you will be prepared to accept in betting on the
truth of that proposition. To be precise, given a subjective probability p for
the proposition, you will accept odds of up to p : (1 – p) on its truth—you
will avoid just those bets, in other words, where you have to pay in more
than p for every dollar you stand to win, so that, for example, if your sub-
jective probability for the proposition is 0.3 then you will pay no more than
$3 to play a game in which you win $10 just in case the proposition is true.
Ramsey thought it very likely that we have appropriately stable behavioral
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dispositions of this sort, accessible to measurement using the betting test,
with respect to just about any proposition we understand, and so that we
have subjective probabilities for all these propositions.

The Bayesian’s principal tool is mathematical argument, and the mathe-
matics in question is the probability calculus—the standard mathematics of
probability—to which all subjective probabilities are assumed to conform.
Conformance to the axioms is Bayesianism’s second fundamental tenet.

Here the Bayesian argument tends to take a prescriptive turn. Having
established that scientists have, as a matter of psychological fact, subjective
probabilities for all propositions that matter, the next step is to show that
scientists ought to—whether they do or not—arrange their probabilities so
as to satisfy the axioms of the probability calculus.

Typically this is done by way of a Dutch Book argument, an argument
that shows that, if you do not adhere to the calculus, there is a certain set of
bets on the truth of various propositions that you are committed in principle
to accepting, but that will lead to a certain loss however things turn out.

Objections to the Dutch Book argument typically turn on the vagueness
of the idea that you are “committed in principle” to accepting the bets in
question; replies to these objections attempt to make the nature of the com-
mitment more precise without leavening its evident undesirability.

For more on Ramsey’s subjectivism, the axioms of probability, and the
Dutch book argument, see the entry on Probability and Chance.

Bayesian Conditionalization

The third of Bayesianism’s three fundamental tenets is Bayes’ conditionaliza-
tion rule, which instructs you on how to update your subjective probabilities
as the evidence arrives.

There are four steps to Bayes’ rule. The first step is to define prior and
posterior subjective probability. These notions are relative to your receipt of
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a piece of evidence: your prior probability for a hypothesis is your subjec-
tive probability for the hypothesis immediately before the evidence comes
in; your posterior probability for the hypothesis is your subjective probabil-
ity immediately after the evidence (and nothing else) comes in. Bayes’ rule
gives you a formula for calculating your posterior probabilities for every hy-
pothesis given your prior probabilities and the nature of the evidence. In so
doing, it offers itself as the complete story as to how to take evidence into
account. In what follows, prior subjective probabilities are written as C(·),
and posterior subjective probabilities as C+(·).

The second step towards Bayes’ rule is the introduction of the notion of
conditional probability, a standard notion in probability mathematics. An
example of a conditional probability is the probability of obtaining a four
on a die roll, given that an even number is obtained. This probability is
1/3, since there are three equally probable ways for a die roll to be even,
one of which is a four. Formally, the probability of a proposition h condi-
tional on another proposition g is written C(h |g); it is usually defined to be
C(hg)/C(g). (Alternatively, conditional probability may be taken as a prim-
itive, as explained in the entry on Probability and Chance.)

The third step is to make the following simple posit about condition-
alization: when you receive a piece of evidence e, you should update your
probability for any given hypothesis h so that it is equal to your prior prob-
ability for h given e. That is, on learning that e is true, you should set your
posterior probability C+(h) equal to your prior probability C(h |e). This is
Bayes’ rule in its simplest form, but one further step will produce a more
familiar, and revealing, version of the rule.

The fourth and final step is to notice a simple mathematical consequence
of the definition of conditional probability, confusingly called Bayes’ theo-
rem (confusing because Bayes’ theorem and Bayes’ rule are two very different
propositions). According to Bayes’ theorem,

C(h |e) =
C(e |h)
C(e)

C(h).
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Combine Bayes’ theorem and the simple form of Bayes’ rule and you obtain
the more familiar version of Bayes’ rule:

C+(h) =
C(e |h)
C(e)

C(h).

The effect of the application of Bayes’ rule, then—or as philosophers usually
say, the effect of Bayesian conditionalization—is, on receipt of e, to multi-
ply the old probability for h by the factor C(e |h)/C(e). Call this factor the
Bayesian multiplier.

What justification can be offered for Bayesian conditionalization? Since
the notion of conditional probability is introduced by definition, and Bayes’
theorem is a simple consequence of the definition, this amounts to the ques-
tion why you ought, on learning e, to set your posterior probability for a
hypothesis h equal to the prior probability C(h |e).

Various arguments for conditionalizing in this way exist in the literature,
often based on Dutch book considerations that invoke the notion of a condi-
tional bet. The consensus is that none is entirely convincing. It is important
to note that mathematics alone cannot settle the question: the probability
calculus relates only different probabilities that are part of the same overall
distribution, whereas Bayes’ rule relates probabilities from two quite differ-
ent distributions, the prior and posterior distributions.

Two further remarks on Bayesian conditionalization. First, Bayes’ rule
assumes that the subjective probability of the evidence e goes to one when it
is acquired, therefore that when evidence arrives, its content is exhausted by
a proposition that comes to be known for sure. A natural extension of the
rule, called Jeffrey conditionalization, relaxes this assumption (Jeffrey 1983).

Second, youmay wonder whether background knowledge must be taken
into account when conditionalizing. In fact, it is automatically taken into
account: background knowledge has subjective probability one, and for any
proposition k with probability one, C(h |k) = C(h); thus, your subjective
probability distribution always has your background knowledge in every re-
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spect “built in”.
Now to discuss the implications of Bayesianism for confirmation. (Fur-

ther implications will be considered in the next section.)
The impact of evidence e on a hypothesis h is determined, recall, by the

Bayesian multiplier, C(e |h)/C(e), which when multiplied by the prior for
h yields its posterior. You do not need any great mathematical expertise to
see that, when C(e |h) is greater than C(e), the probability of h will increase
on receipt of e, while when it is C(e) that is greater, the probability of h will
decrease.

When the receipt of e causes the probability of h to increase, e is said
to con�rm h. When it causes the probability of h to decrease, it is said to
discon�rm h. This may look like a definition, but it is in fact a substantive
philosophical thesis: the Bayesian claims that the preexisting notions of con-
firmation and disconfirmation can be given a satisfactory Bayesian analysis.
(Or at least, the Bayesian usually makes this claim: they also have the option
of interpreting their definition as a piece of revisionism, not intended to
capture our actual notion of confirmation but to replace it with something
better.)

Two remarks. First, to say that a hypothesis is confirmed is only to say
that its probability has received some kind of upward bump. The bumpmay
be very small, and the resulting posterior probability, though higher than
the prior, may be almost as small. The term con�rmed has, in philosophical
usage, a very different sense from a term such as veri�ed.

Second, since whether or not a piece of evidence confirms a hypothe-
sis depends on a subjective probability distribution, confirmation is in the
first instance a relative matter. More on this in The Subjectivity of Bayesian
Con�rmation below.

One further definition: the quantity C(e |h) is called a likelihood, specif-
ically the likelihood of h on e (not to be confused with the probability of h
given e, though there is a close relationship between the two, spelled out by
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Bayes’ theorem).
The significance of the Bayesian multiplier can now be stated in natural

language: a piece of evidence confirms a hypothesis relative to a particular
subjective probability distribution just in case the likelihood of the hypothe-
sis on the evidence is greater than the subjective probability for the evidence.

Consider a special case, that in which a hypothesis h entails the evidence
e. By a theorem of the probability calculus the likelihood of h on e, that is,
C(e |h), is in any such case equal to one. Suppose that e is observed to be
true. Assuming that C(e) is less than one (which will be true unless all viable
hypotheses predict e), then the likelihood will be greater than C(e), and so
h will be confirmed. Ignoring the parenthetical qualification, a hypothesis
is always confirmed by its predictions. Further, the more surprising the pre-
diction, in a sense—the lower the prior probability of e—the more h will be
confirmed if e is in fact observed.

The significance of this observation is limited in two ways. First, some
hypotheses predict evidence only with a certain probability less than one.
Second, hypotheses tend tomake observable predictions only in conjunction
with other, “auxiliary” hypotheses. The Bayesian response will be considered
in the next section.

The BayesianMachine

Suppose you want to know whether a certain coin is fair, that is, biased nei-
ther towards heads nor tails. You toss the coin ten times, obtaining exactly
five heads and five tails. How to conditionalize on this evidence? You will
need three subjective probabilities: the prior probability for the hypothesis
h that the coin is fair, the prior probability for the evidence e, and the like-
lihood of h on e. A good Bayesian is committed to adopting definite values
for these subjective probabilities one way or another. If necessary, they will
be set “by hand”, that is, by some sort of reflective process that is constrained
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only by the axioms of the probability calculus. But a great part of the appeal
of Bayesianism is that the vast majority of subjective probabilities can be set
“mechanically”, that is, that they will have their values fully determined once
a few special probabilities are set by hand. In the case of the coin, once the
prior probability for h and its rivals is set by hand, a little philosophy and
mathematics of probability will take care of everything else, mechanically
fixing the likelihood and the probability for the evidence.

Begin with the likelihood, the probability of getting exactly five heads in
ten tosses given that the coin is fair. Since the fairness of the coin entails
(suppose) both a physical probability for heads of 0.5 and the independence
of the tosses, the hypothesis that the coin is fair assigns a definite physical
probability to your observed outcome of five heads—a probability of about
0.25, as it happens. Intuitively, it seems right to take this as the likelihood—
to set your subjective probability C(e |h), that is, equal to the physical prob-
ability that h assigns to e. In its sophisticated form, this intuition is what is
sometimes known as Miller’s Principle or the Principal Principle; call it the
Probability Coordination Principle or pcp for short (see the entry on Prob-
ability and Chance). Bayesians normally take pcp on board, thus relieving
you of the effort of setting a value by hand for the likelihood in a case such
as this.

Now consider the probability of the evidence. A theorem of the proba-
bility calculus, the total probability theorem, looks (in one of its forms) like
this:

C(e) = C(e |h1)C(h1) + C(e |h2)C(h2) + · · ·

where the hypotheses h1, h2, . . . form a mutually exclusive, exhaustive set,
in the sense that one and only one of them must be true. In many cases,
the set of hypotheses among which you are trying, with the help of e, to
decide form such a set (though see below). Thus, if you have set values
for the likelihoods C(e |hi) and prior probabilities C(hi) for all your rival
hypotheses, the probability calculus gives you a unique correct subjective
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probability to assign to e.
To sum up: if your rival hypotheses assign definite physical probabilities

to the evidence e and form a mutually exclusive, exhaustive set, then by an
independent principle of rationality, pcp, and a theorem of the probability
calculus, total probability, the Bayesian multipliers for all of the hypotheses
are completely determined once their prior probabilities are fixed.

As a consequence, you need only assign subjective probabilities by hand
to a relatively small set of propositions, and only once in your life: at the very
beginning, before any evidence comes in, you will assign subjective proba-
bilities to every possible scientific hypothesis. These assignments made, ev-
erything you need for Bayesian conditionalization is decided for you by pcp
and the probability axioms. In this sense, Bayesian confirmation runs like a
well-conditioned machine: you flip the on switch, by assigning initial prior
probabilities to the different hypotheses that interest you, and then sit back
and enjoy the evidential ride. (Conditionalization is also machine-like with-
out pcp and total probability, but in that case flipping the on switch involves
assigning values to C(e |hi) and C(e) for every possible piece of evidence e.)

There are two obstacles to the smooth functioning of the Bayesian ma-
chine. First, it may be that some or all of the rival hypotheses do not, on
their own, assign a determinate physical probability to the evidence. In such
cases, the likelihoodmust either be fixed by hand, without the help of pcp, or
(more usually in the quantitative sciences) by supplementing the hypothesis
with an auxiliary hypothesis in conjunction with which it does fix a phys-
ical probability for the evidence. In the latter case, pcp can be applied but
complications arise when, as is typical, the truth of the auxiliary hypothesis
is itself not known for sure. The conjunction of original and auxiliary hy-
pothesis may be confirmed or disconfirmed mechanically, but the implica-
tion for the original hypothesis on its own—whether it is confirmed, and if
so by how much—will continue to depend on handcrafted likelihoods such
as C(e |h). This is the Bayesian’s version of confirmation theory’s Quine-
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Duhem problem (cross-reference). Strevens (2001) offers a partial solution
to the problem. (The application of pcp will also fall through if the evidence
is “inadmissible”; see the discussion of probability coordination in the entry
on Probability and Chance.)

Second, even when the likelihoods are fixedmechanically, the theorem of
total probability may not apply if the rival hypotheses are either not mutu-
ally exclusive or not exhaustive. Lack of exhaustiveness is the more pressing
worry, as it would seem to be the norm: exhaustiveness implies that you
have thought of every possible theory that predicts e to any extent—an un-
likely feat. A simple fix is to include a residual hypothesis in your set to the
effect that none of the other hypotheses is correct. Such a hypothesis will
not, however, determine a definite physical probability for the evidence, so
its likelihood, and therefore the probability for the evidence, will after all
have to be fixed by hand.

Bayesianism and the Problem of Induction

Does the Bayesian theory of confirmation solve the problem of induction?
The case for an affirmative answer: adherence to the tenets of Bayesianism
can be justified a priori (by Dutch book arguments and the like, or so some
philosophers believe). And this adherence alone is sufficient to turn you into
an inductive reasoner: once you have settled on priors for all the hypotheses,
the Bayesian machinery tells you what sort of things to expect in the future
given your experience of the past.

Suppose, for example, that you wish to predict the color of the next
raven. You have various theses about raven color: all ravens are blue; ravens
are green with 50% probability, otherwise black; all ravens are black, and so
on. In your life to date, you have observed a number of ravens, all of them
black. This evidence rules out altogether some of the raven color theses,
such as the thesis that all ravens are blue. (The likelihood of the blue the-
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sis on this evidence is zero, so the multiplier is zero: observation of a black
raven therefore causes your subjective probability for the blue thesis to drop
to zero.)

Other theses have their probability shifted around by the evidence in
other ways. The more they probabilify the evidence, the greater their likeli-
hoods on the evidence and so the higher their Bayesian multipliers. Observ-
ing many black ravens has the effect, then, of moving your subjective prob-
ability away from hypotheses that do not probabilify blackness and towards
theses that do. As a result, the observation of many black ravens in the past
increases your subjective probability that the next raven will be black. Thus
you have an a priori argument—the argument for accepting Bayesianism—
that justifies inductive behavior.

The case for a negative answer as to whether Bayesianism solves the prob-
lem of induction can be made in two ways: by arguing that the a priori argu-
ments for adopting the Bayesian apparatus fall through, or by arguing that
Bayesianism does not, after all, underwrite inductive behavior. The second
approach is the more illuminating.

Return to the ravens. The theses listed above have the uniformity of na-
ture as a consequence: if any is true, then the future will be, with respect to
raven color, like the past. Once some non-uniform theses are thrown into
the mix, everything changes. Consider, for example, the following thesis,
reminiscent of Goodman’s grue puzzle: all ravens observed until now are
black, the rest green. The Bayesian multipliers for this thesis and the thesis
that all ravens are black remain the same as long as all observed ravens are
black, which is to say, up until this point in time. Just as probability has
been flowing to the latter hypothesis, it will have been flowing to the for-
mer. It turns out, then, that the probability flow is not only towards theses
that predict blackness for future ravens, but also towards many others. Since
the multipliers for these theses have been the same until now, your predic-
tions about the color of ravens will favor blackness only if your initial prior
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probabilities—the probabilities you assigned to the different theses before
any evidence came in—already favored the thesis that all ravens are black
over the grue-like thesis, which is to say, only if you yourself already favored
uniformity over diversity.

Many Bayesians have made their peace with Bayesianism’s open-minded
policy on natural uniformity. Howson (2001) argues, for example, that the
Bayesian approach should not be considered so much a positive theory of
confirmation—of how evidence bears on hypotheses—as a framework for
implementing any theory of confirmation you like.

The Subjectivity of Bayesian Con�rmation

Suppose that the Bayesian machine is in good working order: you choose
your prior probabilities for the rival hypotheses, and then let the evidence,
in conjunction with pcp and the total probability theorem, do the rest. Even
then, with your personal input limited to no more than an assessment of the
initial plausibility of the rival hypotheses, there is an unsettling element of
subjectivity to the process of Bayesian confirmation, which is perhaps best
brought out by the following observation: two scientists who agree on the
physical probabilities that a hypothesis h assigns to evidence e, and who fol-
low pcp, so assigning the same value to the likelihood C(e |h), may disagree
on whether e confirms or disconfirms h.

To see why: e confirms h if the Bayesian multiplier is greater than one,
and disconfirms it if the multiplier is less than one. The question, then, is
whether C(e |h) is greater than or less than C(e). The scientists agree on
C(e |h), but they may have different values for C(e): a scientist who assigns
higher prior probabilities to hypotheses that assign higher physical proba-
bilities to e will have a higher value for C(e). It is quite possible for the two
scientists’ priors for e to fall on either side of C(e |h), in which case one will
take e to confirm, the other to disconfirm, h.
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A radical personalist denies that this is a problem: why should two sci-
entists agree on the significance of the evidence when one was expecting
the evidence much more than the other? In the extreme, personalism of
this sort approaches the view that Bayesian confirmation theory provides no
guidance at all on assessing the significance of evidence, other than by estab-
lishing a standard of consistency (Howson 2001); see also the discussion of
induction above.

There is some objectivity underlying Bayesianism’s subjectivity, however.
The two scientists above will, because they agree on the likelihoods, agree on
the ordering of the Bayesian multipliers. That is, they will agree on which
of any two hypotheses has the higher Bayesian multiplier, even though they
may disagree on the size of the multipliers.

An important consequence of this agreement is a result about the con-
vergence of opinion. When hypotheses assign physical probabilities to the
evidence, as assumed here, it can be shown that as time goes on, the subjec-
tive probability distributions of any two scientists will with very high phys-
ical probability converge on the truth, or rather to the class of hypotheses
empirically equivalent to the truth. (Even when the likelihoods are purely
subjective, or at least only as objective as the probability calculus requires, a
convergence result, albeit more limited, can be proved.)

Many Bayesians regard this convergence as ameliorating, in every im-
portant way, the subjective aspect of Bayesianism, since any disagreements
among Bayesian scientists are ephemeral, while agreement lasts forever. In-
deed, that Bayesianism makes some, but not too much, room for scientific
dissent may not unreasonably be seen as an advantage, in both a descriptive
and a prescriptive light.

Now consider a contrary view: while dissent has its place in science, it has
no place in scientific inference. It is fine for scientists to disagree, at least for
a time, on the plausibility of various hypotheses, but it is not at all fine that
they disagree on the impact of the evidence on the hypotheses—agreement
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on the import of the evidence being the sine qua non of science. In Bayesian
terms, scientists may disagree on the priors for the rival hypotheses, but
they had better not disagree on the Bayesian multipliers. But this is, for a
Bayesian, impossible: the priors help to determine themultipliers. The usual
conclusion is that there is no acceptable Bayesian theory of confirmation.

A less usual conclusion is that Bayesianism is still viable, but only if some
further principle of rationality is used to constrain the prior probabilities in
such a way as to determine uniquely correct values for the Bayesianmultipli-
ers. This is objectivist Bayesianism. Just as pcp is used to determine definite,
objective values for the likelihoods, the objectivists suggest, so another rule
might be used to determine definite, objective values for the prior proba-
bilities of the hypotheses themselves, that is, for the subjective probabilities
C(h).

What principle of rationality could possibly tell you, before you have
any empirical evidence whatsoever, exactly how plausible you ought to find
some given scientific hypothesis? Objectivists look to the principle of indif-
ference for the answer. That principle, discussed more fully in the entry on
Probability and Chance, is in one of its guises intended to specify a unique
probability distribution over a set of propositions, such as hypotheses, that
reflects complete ignorance as to which of the set is true. Thus the very fact
that you have no evidence is itself taken to commit you to a particular as-
signment of prior probabilities—typically, a probability distribution that is
uniform in some sense (Jaynes 1983).

The objectivist envisages all Bayesian reasoners marching in lock-step:
they start with precisely the same priors; they apply (thanks to pcp and to-
tal probability) precisely the same Bayesian multipliers; thus, they have the
same subjective probabilities at all times for everything.

There are various powerful objections to the most general forms of the
principle of indifference. Even its most enthusiastic supporters would shy
away from claiming that it determines a uniquely correct prior for absolutely
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any scientific hypothesis. Thus the lock-step picture of Bayesian inference is
offered more as an ideal than as a realistic prospect. To be a modern objec-
tivist is to argue that parts of science, at least, ought to come close to realizing
the ideal.

The Problem of Old Evidence

Among the many achievements of Newton’s theory of gravitation was its
prediction of the tides and their relation to the lunar orbit. Presumably, the
success of this prediction confirmed Newton’s theory, or in Bayesian terms,
the observable facts about the tides e raised the probability of Newton’s the-
ory h.

But the Bayesian, it turns out, can make no such claim. Because the
facts about the tides were already known when Newton’s theory was formu-
lated, the probability for ewas equal to one. It follows immediately that both
C(e) and C(e |h) are equal to one (the latter for any choice of h). But then
the Bayesian multiplier is also one, so Newton’s theory does not receive any
probability boost from its prediction of the tides. As either a description of
actual scientific practice, or a prescription for ideal scientific practice, this is
surely wrong.

The problem generalizes to any case of “old evidence”: if the evidence e is
received before a hypothesis h is formulated, then e is incapable of boosting
the probability of h by way of conditionalization (Glymour 1980, chap. 4).
As is often remarked, the problem of old evidencemight just as well be called
the problem of new theories, since there would be no difficulty if there were
no new theories, that is, if all theories were on the table before the evidence
began to arrive. Whatever you call it, the problem is now considered bymost
Bayesians to be in urgent need of a solution. A number of approaches have
been suggested, none of them entirely satisfactory.

A recap of the problem: if a new theory is discovered midway through an
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inquiry, a prior must be assigned to that theory. You would think that, hav-
ing assigned a prior on non-empirical grounds, you would then proceed to
conditionalize on all the evidence received up until that point. But because
old evidence has probability one, such conditionalization will have no effect.
The Bayesian machinery is silent on the significance of the old evidence for
the new theory.

The first and most conservative solution to the problem is to take the
old evidence into account in setting your prior for the new theory. In doing
this, you are entirely on your own: you cannot use conditionalization or any
other aspect of the Bayesian apparatus to weigh the evidence in a principled
way. But, because you are free to choose whatever prior you like, you are free
to do so in part on the basis of the old evidence.

A second solution requires a radical revision of Bayesian conditional-
ization, so as to allow conditionalization using not the actual probability of
the old evidence, but a (now) counterfactual probability such as your prior
for the evidence immediately before you learned it. This provides a natural
way to use conditionalization to weigh the old evidence, but the difficulties
involved in choosing an appropriate counterfactual prior and in justifying
conditionalization on the false prior, rather than the actual prior, have not
unreasonably scared most Bayesians away.

The third and perhaps most popular solution suggests that, although
conditionalization on old evidence e has no effect on the prior probability
of a new theory h, conditionalizing on the fact that h predicts e (for simplic-
ity’s sake, assume that it entails e) may have an effect. The idea: until you
formulate h, you do not know that it entails e. Once h is formulated and as-
signed a prior, youmay conditionalize on the fact of the entailment; learning
that h entails e will have much the same impact on the probability of h, it is
supposed, as learning e would have had if it were not already known.

There are two difficulties with this suggestion. The first is that facts
about entailment (either of e itself, or of a physical probability for e) are
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logical truths, which ought according to the probability calculus to be as-
signed probability one at all times—making the logical facts as “old” as the
evidence itself. Proponents of the present approach to old evidence argue
not unreasonably that a sophisticated Bayesianism ought to allow for logical
learning, so that it is the requirement that subjective probabilities conform
to the probability calculus in every respect that is at fault here, for imposing
an unreasonably strict demand on flesh and blood inquirers.

The second (and related) difficulty is that the theory of conditionaliza-
tion on logical facts is not nearly so nicely developed as the theory of ortho-
dox Bayesian conditionalization. A case can be made that conditionalizing
on h’s entailment of old evidence will increase the probability of h, but the
details are complicated and controversial. See Earman (1992) for further
discussion.

Bayesianism Accessorized

Two notable additions to the Bayesian apparatus are ever under considera-
tion.

First is a theory of acceptance, that is, a theory that dictates, given your
subjective probabilities, which hypotheses you ought to “accept”. Conven-
tional Bayesianism has no need of acceptance: your subjective probabilities
are taken to exhaust your epistemic attitudes to the hypotheses, and also
to determine, along with your preferences in the usual decision-theoretical
way, the practical significance of these attitudes.

Some philosophers argue that there is, nevertheless, work for a notion of
acceptance to do, and hold either a simple view on which hypotheses with
high subjective probability are to be accepted, or a more sophisticated view
on which not only probability but the consequences for science, good and
bad, of acceptance must be taken into account (Levi 1967).

Second is a theory of confirmational relevance, that is, a theory that dic-
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tates, given your subjective probabilities, to what degree a given piece of ev-
idence confirms a given hypothesis. Conventional Bayesianism has no need
of confirmational relevance: your subjective probabilities are taken to ex-
haust your epistemic attitudes to the hypotheses, and so the dynamics of
confirmation are exhausted by the facts about the way in which the subjec-
tive probabilities change, which are themselves fully determined, through
conditionalization, by the values of the subjective probabilities themselves.
Nothing is added to the dynamics of probability change—nothing could be
added—by finding a standard by which to judge whether certain evidence
has a “large” or “small” impact on the hypotheses; however you talk about
probability change, it is the change that it is. (A truly pure-hearted Bayesian
need not even define con�rms and discon�rms.)

Many different measures of relevance have, nevertheless, been proposed
(Fitelson 1999). The simple difference measure equates the relevance of e to
h with the difference between the prior and posterior probabilities of h after
conditionalization on e, or equivalently, with C(h |e) – C(h). The likelihood
measure equates the relevance of e to h with C(e |h)/C(e |¬h). It should be
noted that all popular Bayesian measures render relevance relative to back-
ground knowledge.

There is no doubt that scientists sometimes talk about accepting theories
and about the strength of the evidence—and that they do not talk much
about subjective probability. The degree to which you see this as a problem
for unadorned Bayesian confirmation theory itself measures, perhaps, your
position on the spectrum between prescriptive and descriptive.
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